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THE DEGREE THEOREM IN HIGHER RANK

CHRISTOPHER CONNELL & BENSON FARB

Abstract
Let N be any closed, Riemannian manifold. In this paper we prove that,
for most locally symmetric, nonpositively curved Riemannian manifolds M ,
and for every continuous map f : N → M , the map f is homotopic to a
smooth map with Jacobian bounded by a universal constant, depending (as
it must) only on Ricci curvature bounds of N . From this we deduce an
extension of Gromov’s Volume Comparison Theorem for negatively curved
manifolds to (most) nonpositively curved, locally symmetric manifolds.

1. Introduction

The problem of relating volume to degree for maps between Rieman-
nian manifolds is a fundamental one. Gromov’s Volume Comparison
Theorem [14] gives such a relation for maps into negatively curved man-
ifolds. In this paper we extend Gromov’s theorem to locally symmetric
manifolds of nonpositive curvature. We derive this as a consequence of
the following result, which we believe to be of independent interest.

Theorem 1.1 (Universal Jacobian bound). Let M be a closed, lo-
cally symmetric n-manifold with nonpositive sectional curvatures. As-
sume that M has no local direct factors locally isometric to R,H2, or
SL3(R)/ SO3(R). Then for any closed Riemannian manifold N and any
continuous map f : N → M , there exists a constant C > 0, depending
only on n and the smallest Ricci curvatures of N and M , so that f is
homotopic to a C1 map F : N → M satisfying

| Jac F | ≤ C.
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Remark. By scaling the metrics it is easy to see that the depen-
dence of the constant C on the smallest curvatures cannot be removed.
Actually, we determine the constant explicitly in terms of the symmetric
space and the volume entropy of N (see §2.1).

Theorem 1.1 together with a simple degree argument (see §6) gives
the following generalization of Gromov’s Volume Comparison Theorem.

Theorem 1.2 (The Degree Theorem). Let M be as in Theo-
rem 1.1. Then for any closed Riemannian manifold N and any contin-
uous map f : N → M ,

deg(f) ≤ C
Vol(N)
Vol(M)

where C > 0 depends only on n and the smallest Ricci curvatures of N
and M .

Remarks.

1. As tori have self-maps of arbitrary degree, it is easy to see that
the theorem would be false without the “no R factors” hypothesis.
We believe that the “no H2 or SL3(R)/ SO3(R) local factors”
hypothesis is unnecessary; we show in Example 4.6 below and in
§6 of [10], however, that the issue is rather delicate.

2. As with Theorem 1.1, the dependence of the constant C on the
smallest curvatures cannot be removed; this dependence is deter-
mined explicitly in §2.1.

3. In §6.2 we extend Theorem 1.2 to the case where N and M have
finite volume (with “bounded geometry”) but are not necessarily
compact, and where f is a coarse Lipshitz map.

When dim(M) = 2 the conclusion of the theorem follows easily from
the Gauss-Bonnet Theorem. More generally, when M is any closed man-
ifold with positive Gromov norm, Gromov has shown (see [14], p. 8 and
the Main Inequality on p. 12) that a degree theorem as in Theorem 1.2
holds for M . Positivity of the Gromov norm for closed, locally sym-
metric M as in Theorem 1.2 is still an open question. However, this
positivity was proved by Savage [21] for closed M locally isometric to
SLn(R)/ SOn(R).



degree theorem in higher rank 21

When rank(M) = 1, Besson-Courtois-Gallot [2] proved the stronger
entropy rigidity theorem, giving the exact best constant C. Entropy
rigidity is still open in higher rank 1 ; this would correspond to the above
theorem with the constant C in the inequality being C =

(
h(g)
h(g0)

)n
,

where h(g) and h(g0) are the volume entropies of N and M (see [2]),
with equality being obtained iff N is a Riemannian cover of M after an
appropriate rescaling.

The Besson-Courtois-Gallot technique is a central ingredient here;
indeed the main idea in our proof of Theorem 1.1 is to establish a higher
rank version of the “canonical map” of [2], and to give an a priori bound
on its Jacobian. Obtaining this bound is the hardest part of the present
paper (see §4 and §5). Our estimates in §4 and §5 can be viewed as a
first step towards proving higher rank entropy rigidity.

The Minvol invariant. One of the basic invariants associated to
a smooth manifold M is its minimal volume:

Minvol(M) := inf
g
{Vol(M, g) : |K(g)| ≤ 1}

where g ranges over all smooth metrics on M and K(g) denotes the
sectional curvature of g. The basic questions about Minvol(M) are: for
which M is Minvol(M) > 0? When is Minvol(M) realized by some
metric g?

When a nonpositively curved manifold M has a local direct factor
locally isometric to R, it is easy to see that Minvol(M) = 0. By taking f
to be the identity map (while varying the metric g on M), Theorem 1.2
immediately gives:

Corollary 1.3 (Positivity of Minvol). Let M be any finite vol-
ume, locally symmetric n-manifold (n ≥ 2) of nonpositive curva-
ture. If M has no local direct factors locally isometric to R,H2, or
SL3(R)/ SO3(R), then Minvol(M) > 0.

For compact M , Corollary 1.3 was proved (without the H2 and
SL(3,R) restriction) in [15] (see also [21] for the case manifolds lo-
cally modelled on the symmetric space for SL(n,R)). When M ad-
mits a (real) hyperbolic metric, Besson-Courtois-Gallot [2] proved that
Minvol(M) is uniquely realized by the hyperbolic metric. It seems pos-
sible that this might hold in general.

1Entropy rigidity has recently been proved [4, 9] for manifolds locally modelled
on products of rank one symmetric spaces with no H2 factors.
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Self maps and the co-Hopf property. As deg(fn) = deg(f)n,
an immediate corollary of Theorem 1.2 is the following.

Corollary 1.4 (Self maps). Let M be a finite-volume locally sym-
metric manifold as in Theorem 1.1. Then M admits no self-maps of
degree > 1. In particular, π1(M) is co-Hopfian: every injective endo-
morphism of π1(M) is surjective.

Note that Corollary 1.4 may also be deduced from Margulis’s Super-
rigidity theorem (for higher rank M). The co-Hopf property for lattices
was first proved by Prasad [20].

More generally, if N and M are as in Theorem 1.2 and f : N → M
and g : M → N are two maps of nonzero degree then |deg(f)| = 1 =
|deg(g)| since f ◦ g is a self map of M .

Outline of the proof of Theorems 1.1 and 1.2. As noted
above, a simple degree argument shows that it is enough to prove Theo-
rem 1.1. Given f : N → M as in the hypothesis of the theorems, we use
the method of [2, 3] to construct a “canonical” map F : N → M which
is homotopic to f (hence degF = degf) and has universally bounded
Jacobian.

Step 1 (Constructing the map): First consider the case when the
metric on N is nonpositively curved. Denote by Y (resp. X) the uni-
versal cover of N (resp. M). Let M(∂Y ),M(∂X) denote the spaces of
atomless probability measures on the visual boundaries of the universal
covers Y, X.

Morally what we do, following the method of [3], is to define a map

F̃ : Y → M(∂Y )
φ∗→ M(∂X) bar→ X

where φ∗ = ∂f̃∗ is the pushforward of measures and bar is the “barycen-
ter of a measure” (see §3). The inclusion Y → M(∂Y ), denoted x �→ µx,
is given by the construction of the Patterson-Sullivan measures {µx}x∈X

corresponding to π1(N) < Isom(Y ) (see §2). An essential feature of
these constructions is that they are all canonical, so that all of the
maps are equivariant. Hence F̃ descends to a map F : N → M .

One problem with this construction outline is that the metric on
Y may not be nonpositively curved. So we must find an alternative
to using the “visual boundary” of Y . This is done by constructing a
certain family of smooth measures µs on Y itself, pushing them forward
via f̃ , and convolving with Patterson-Sullivan measure on X. Maps
F̃s are then defined by taking the barycenters of these measures; it is
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actually these maps which are considered instead of F . This idea was
first introduced in [2].

Two new features of F appear in higher rank. First, the non-
strictness of convexity of the Busemann function (see §3) must be over-
come to define F . Second, and more importantly, a theorem of Albu-
querque shows that the support of each of the measures µx is codimen-
sion rank(X) − 1 subset of ∂X called the Furstenberg boundary of X
(see §2). This fact and its implications are crucial for later steps.

Step 2 (The Jacobian estimate): The heart of the paper (§4 and
§5) is obtaining a universal bound on F , independent of f . For this, we
first realize the Jacobian of F as the ratio of determinants of two matrix
integrals. We then show that whenever there are small eigenvalues in
the denominator there are a sufficient number of small eigenvalues in
the numerator with which to cancel them. The key is to find these
eigenvalues independently of the integrating measure (which depends
on µs), therefore reducing the problem to a problem about semisimple
Lie groups.

Step 3 (Finishing the proof): Once a universal bound on | Jac(F )| is
found, a simple degree argument finishes the proof. In the case when M
and N are not compact, the main difficulty is proving that Fs is proper.
This is quite technical, and requires extending some of the ideas of [5]
to the higher rank setting.

2. Patterson-Sullivan measures on symmetric spaces

In this section we briefly recall Albuquerque’s theory [1] of Patterson-
Sullivan measures in higher rank symmetric spaces. For background on
nonpositively curved manifolds, symmetric spaces, visual boundaries,
Busemann functions, etc., we refer the reader to [6] and [11].

2.1 Basic properties

Let X be a Riemannian symmetric space of noncompact type. Denote
by ∂X the visual boundary of X; that is, the set of equivalence classes
of geodesic rays in X, endowed with the cone topology. Hence X ∪ ∂X
is a compactification of X which is homeomorphic to a closed ball.

The volume entropy h(g) of a closed Riemannian n-manifold (M, g)
is defined as

h(g) = lim
R→∞

1
R

log(Vol(B(x, R)))
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where B(x, R) is the ball of radius R around a fixed point x in the
universal cover X. The number h(g) is independent of the choice of x,
and equals the topological entropy of the geodesic flow on (M, g) when
the curvature K(g) satisfies K(g) ≤ 0. Note that while the volume
Vol(M, g) is not invariant under scaling the metric g, the normalized
entropy

ent(g) = h(g)n Vol(M, g)

is scale invariant.
Let Γ be a lattice in Isom(X), so that h(g0) < ∞ where (M, g0) is

Γ\X with the locally symmetric metric.
Generalizing the construction of Patterson-Sullivan, Albuquerque

constructs in [1] a family of Patterson-Sullivan measures on ∂X. This
is a family of probability measures {νx}x∈X on ∂X which provide a par-
ticularly natural embedding of X into the space of probability measures
on ∂X.

Theorem 2.1 (Existence Theorem, [1]). There exists a family
{νx} of probability measures on ∂X satisfying the following properties:

1. Each νx has no atoms.

2. The family of measures {νx} is Γ-equivariant:

γ∗νx = νγx for all γ ∈ Γ.

3. For all x, y ∈ X, the measure νy is absolutely continuous with
respect to νx. In fact the Radon-Nikodym derivative is given ex-
plicitly by:

dνx

dνy
(ξ) = eh(g0)B(x,y,ξ)(1)

where B(x, y, ξ) is the Busemann function on X. For points x, y ∈
X and ξ ∈ ∂X, the function B : X × X × ∂X → R is defined by

B(x, y, ξ) = lim
t→∞

dX(y, γξ(t)) − t

where γξ is the unique geodesic ray with γ(0) = x and γ(∞) = ξ.

The third property implies no two measures are the same as mea-
sures. Thus the assignment x �→ νx defines an injective map

ν : X → M(∂X)

where M(∂X) is the space of probability measures on X. Such a map-
ping satisfying the above properties is called an h(g0)-conformal density.
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2.2 Symmetric spaces of noncompact type

Before we present Albuquerque’s theorem we will need some necessary
background about higher rank symmetric spaces.

By definition, the symmetric space X is G/K where G is a semisim-
ple Lie group and K a maximal compact subgroup. Fix once and for
all a basepoint p ∈ X. This choice uniquely determines a Cartan de-
composition g = k⊕ p of the Lie algebra of G where k is the Lie algebra
of the isotropy subgroup K = StabG(p) of p in G and p is orthogonal
to k with respect to the killing form B(·, ·) on g. Therefore, p is also
identified with the tangent space TpX.

Let a be, once and for all, a fixed maximal abelian subalgebra of g.
It follows from the Cartan decomposition that a ⊂ p. The set exp(a) · p
will be a maximal flat (totally geodesically embedded Euclidean space
of maximal dimension) in X. Recall, a vector v ∈ TX is called a regular
vector if it is tangent to a unique maximal flat. Otherwise it is a singular
vector. A geodesic is called regular (resp. singular) if one (and hence all)
of its tangent vectors are regular (singular). A point ξ ∈ ∂X is regular
(singular) if any (and hence all) of the geodesics in the corresponding
equivalence class are regular (singular).

Let a∗ be the dual to a, then for each α ∈ a∗ define

gα = {Y ∈ g| adA Y = α(A)Y for all A ∈ a}.

We call α a root if gα �= 0. Therefore the roots form a finite set Λ.
If θp is the Cartan involution associated to the point p, which is Id

on k and − Id on p, then we may define a positive definite inner product
φp on g by φp(Y, Z) = −B(θpY, Z). With respect to φp, the folowing
root space decomposition

g = g0 +
∑
α∈Λ

gα

is orthogonal.
The following is proposition can be found in 2.7.3 of [11].

Proposition 2.2. Some properties of the roots and root space
decomposition are:

1. [gα, gβ] ⊂ gα+β if α + β ∈ Λ or is 0 otherwise.

2. If α ∈ Λ then −α ∈ Λ and θp : gα → g−α is an isomorphism.
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3. If α is not an integer multiple of some other λ ∈ Λ then the only
possible multiples of α in Λ are ±α and ±2α.

4. We have g0 = (g0 ∩ k) + a.

5. If α, β ∈ Λ then β − 2 〈α,β〉
〈α,α〉α ∈ Λ where 〈·, ·〉 is the dual inner

product to φp on a∗. Furthermore, 2 〈α,β〉
〈α,α〉 is always an integer and

if α and β are not collinear then it is ±1.

We call a subset ∆ ⊂ Λ a base for Λ if:

1. The elements of ∆ form a basis (over R) for a∗.

2. Every root in Λ can be written as a linear combination of of ele-
ments in ∆ with coefficients being either all nonnegative integers
or all nonpositive integers.

If we choose an regular element A ∈ a then define the set of positive
roots corresponding to A,

Λ+
A = {α ∈ Λ | α(A) ≥ 0}

The subset ∆+
A ⊂ Λ+

A consisting of elements which cannot be written as
a sum of two elements in Λ+

A is a base for Λ. Sometimes ∆+
A is called a

fundamental system of positive roots.
For A ∈ a the associated (open) Weyl chamber W (A) is the con-

nected component of the set of regular vectors in a which contains A.
We also call the set exp W (A) ⊂ exp(a), as well as exp(W (A)) · p ⊂ X,
a Weyl chamber which we again denote by W (A) using the context to
determine where exactly it lies.

The union of all the singular geodesics in the flat exp(a) · p passing
through p is a finite set of hyperplanes forming the boundaries of the
Weyl chambers. This provides another description of the Weyl chamber
W (A) as

W (A) = {Y ∈ a | α(Y ) > 0 for all α ∈ ∆+
A}.

For each subset I ⊂ ∆+
A the set WI(A) = ∩α∈I(ker α ∩ W (A) is called

the Weyl chamber face corresponding to the set I, and we designate
W∅(A) = W (A). The subgroup of K which stabilizes the face WI(A)
we denote by KI .
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2.3 The Furstenberg boundary

The Furstenberg boundary of a symmetric space X of noncompact type is
abstractly defined to be G/P where P is a minimal parabolic subgroup
of the connected component G of the identity in Isom(X).

The Furstenberg boundary can be identified with the orbit of G
acting on any regular point v(∞) ∈ ∂X, the endpoint of a geodesic
tangent to a regular vector v. of a Weyl chamber in a fixed flat a. This
follows from the fact that the action of any such P on ∂X fixes some
regular point.

Because of this, for symmetric spaces of higher rank, behaviour on
the visual boundary can often be aptly described by its restriction to the
Furstenberg boundary. Here we will use only some very basic properties
of this boundary. For more details on semisimple Lie groups and the
Furstenberg boundary, see [23].

For a fixed regular vector A ∈ a and associated set of positive roots
Λ+

A the barycenter b of the Weyl chamber W (A) is defined to be

b =
∑

α∈Λ+
A

mαHα

where mα = dim gα is the multiplicty of α and Hα is the dual vector
(with respect to φp) of α. Set b+ = b/‖b‖.

Define the set ∂F X ⊂ ∂X to be ∂F X = G · b+(∞). Henceforth we
will refer to the Furstenberg boundary as this specific realization. We
point out that for any lattice Γ in Isom(X), the induced action on the
boundary is transitive only on ∂F X. That is, Γ · b+(∞) = G · b+(∞),
even though for any interior point x ∈ X we have Γ · x = ∂X.

2.4 Albuquerque’s Theorem

Theorem 7.4 and Proposition 7.5 of [1] combine to give the following
theorem, which will play a crucial role in our proof of Theorem 1.2.

Theorem 2.3 (Description of νx). Let (X, g0) be a symmetric
space of noncompact type, and let Γ be a lattice in Isom(X). Then:

1. h(g0) = ‖b‖.

2. b+(∞) is a regular point, and hence ∂F X is a regular set.

3. For any x ∈ X, the support supp(νx) of νx is equal to ∂F X.
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4. νx is the unique probability measure invariant under the action on
∂F X of the compact isotropy group StabG(x) at x. In particular,
νp is the unique K-invariant probability measure on ∂F X.

Note that when X is has rank one, ∂F X = ∂X. In general ∂F X has
codimension rank(X) − 1 in ∂X.

2.5 Limits of Patterson-Sullivan measures

We now describe the asymptotic behaviour of the νx as x tends to a
point in ∂X.

For any point ξ of the visual boundary, let Sθ be the set of points
ξ ∈ ∂F X such that there is a Weyl chamber W whose closure ∂W in ∂X
contains both θ and ξ. Let Kθ be the subgroup of K which stabilizes
Sθ. Kθ acts transitively on Sθ (see the proof below).

Theorem 2.4 (Support of νx). Given any sequence {xi} tending
to θ ∈ ∂X in the cone topology, the measures νxi converge in M(∂F X)
to the unique Kθ-invariant probability measure νθ supported on Sθ.

Proof. Let xi = gi·p, for an appropriate sequence gi ∈ G. Recall that
νxi = (gi)∗νp. Then combining part (4) of Theorem 2.3 with Proposition
9.43 of [13] have that some subsequence of the νxi converges to a Kθ-
invariant measure νθ supported on Sθ.

Note that in [13], the notation I refers to a subset of a fundamental
set of roots corresponding to the face of a Weyl chamber containing
θ in its boundary. If gi · p = kiai · p converges then both k = lim ki

and aI = limi aI
i exist (note the definition of aI in [13]). Again in the

notation of [13], Kθ is the conjugate subgroup (kaI)KI(kaI)−1 in K.
Moreover, Sθ is the orbit kaIKI · b+(∞).

By Corollary 9.46 and Proposition 9.45 of [13] any other convergent
subsequence of the νxi produces the same measure in the limit, and
therefore the sequence νxi itself converges to νθ uniquely. q.e.d.

In the case when θ is a regular point, the above theorem implies
that Sθ is a single point and the limit measure νθ is simply the Dirac
probability measure at that point point in ∂F X.

3. The barycenter of a measure

In this section we describe the natural map which is an essential
ingredient in the method of Besson-Courtois-Gallot.
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Let φ denote the lift to universal covers of f with basepoint p ∈ Y
(resp. f(p) ∈ X), i.e., φ = f̃ : Y → X. We will also denote the
metric and Riemannian volume form on universal cover Y by g and dg
respectively. Then for each s > h(g) and y ∈ Y consider the probability
measure µs

y on Y in the Lebesgue class with density given by

dµs
y

dg
(z) =

e−sd(y,z)∫
Y e−sd(y,z)dg

.

The µs
y are well-defined by the choice of s.

Consider the push-forward φ∗µs
y, which is a measure on X. Define

σs
y to be the convolution of φ∗µs

y with the Patterson-Sullivan measure
νz for the symmetric metric.

In other words, for U ⊂ ∂X a Borel set, define

σs
y(U) =

∫
X

νz(U)d(φ∗µ
s
y)(z).

Since ‖νz‖ = 1, we have

‖σs
y‖ = ‖µs

y‖ = 1.

Let B(x, θ) = B(f̃(p), x, θ) be the Busemann function on X with
respect to the basepoint f̃(p) (which we will also denote by p). For
s > h(g) and x ∈ X, y ∈ Y define a function

Bs,y(x) =
∫

∂X
B(x, θ)dσs

y(θ).

By Theorem 2.4, the support of νz, hence of σs
y, is all of ∂F X, which

in turn equals the G-orbit G · b+(∞). Hence

Bs,y(x) =
∫

∂F X
B(x, θ)dσs

y(θ) =
∫

G·b+(∞)
B(x, θ)dσs

y(θ).

Since X is nonpositively curved, the Busemann function B is (non-
strictly) convex on X. Hence Bs,y is convex on X, being a convex
integral of convex functions. While B is strictly convex only when X is
negatively curved, we have the following.

Proposition 3.1 (Strict convexity of B). For each fixed y and s,
the function x �→ By,s(x) is strictly convex, and has a unique critical
point in X which is its minimum.
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Proof. It suffices to show that given a geodesic segment γ(t) between
two points γ(0), γ(1) ∈ X, there exists some ξ ∈ ∂F X such that function
B(γ(t), ξ) is strictly convex in t, and hence on an open positive µy-
measure set around ξ. We know it is convex by the comment preceding
the statement of the proposition.

If B(γ(t), ξ) is constant on some geodesic subsegment of γ for some
ξ, then γ must lie in some flat F such that the geodesic between ξ ∈ ∂F
and γ (which meets γ at a right angle) also lies in F . On the other
hand, ξ ∈ ∂F X is in the direction of the algebraic centroid in a Weyl
chamber, and γ is perpendicular to this direction. By the properties of
the roots, γ is a regular geodesic (i.e., γ is not contained in the boundary
of a Weyl chamber). In particular, γ is contained in a unique flat F .
Furthermore, ∂F X ∩ ∂F is a finite set (an orbit of the Weyl group). As
a result, for almost every ξ ∈ ∂F X B(γ(t), ξ) is strictly convex in t.

For fixed z ∈ X, by the last property listed in Theorem 2.1, we see
that ∫

∂F X
B(x, θ)dνz(θ)

tends to ∞ as x tends to any boundary point ξ ∈ ∂X. Then for fixed y
and s > h(g), By,s(x) increases to ∞ as x tends to any boundary point
ξ ∈ ∂X. Hence it has a local minimum in X, which by strict convexity
must be unique. q.e.d.

We call the unique critical point of Bs,y the barycenter of the measure
σs

y, and define a map F̃s : Y → X by

F̃s(y) = the unique critical point of Bs,y.

Since for any two points p1, p2 ∈ X

B(p1, x, θ) = B(p2, x, θ) + B(p1, p2, θ)

we see that Bs,y only changes by an additive constant when we change
the basepoint of B. Also, Bs,y only changes by a multiplicative constant
when we change the basepoint in the definition of µy. Since neither
change affects the critical point of By,s, we see that F̃s is independent
of choice of basepoints.

The equivariance of f̃ and of {µy} implies that F̃s is also equivariant.
Hence F̃s descends to a map Fs : N → M . It is easy to see that Fs is
homotopic to f .
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Proposition 3.2. The map Ψs : [0, 1] × N → M defined by

Ψs(t, y) = Fs+ t
1−t

(y)

is a homotopy between Ψs(0, ·) = Fs and Ψs(1, ·) = f for any s > h(g).

Proof. From its definitions, F̃s(y) is continuous in s and y. If (si, yi)
is a sequence converging to (s0, y) for s0 ≥ s and y ∈ M then from the
definition it is easy to verify that F̃si(yi) converges to F̃s0(y). If on the
other hand si → ∞, then observe that limi→∞ σsi

yi
= νφ(y). If follows

that limi→∞ F̃si(yi) = φ(y). This implies the proposition. q.e.d.

As in [2], we will see that Fs is C1, and will estimate its Jacobian.

4. The Jacobian estimate

Let X be expressed as a product of its irreducible factors X =
X1×· · ·×Xk, and let gi denote the restricted symmetric metric on each
factor Xi. As above, h(gi) denotes the volume entropy of (Xi, gi). The
main estimate of this paper is the following.

Theorem 4.1 (The Jacobian Estimate). For all s > h(g) and all
y ∈ N we have

| Jac Fs(y)| ≤ C

(
s

h(g1)h(g2) . . . h(gk)

)n

for some constant C, depending only on dim M .

Dependence of constants. Up to scaling of the metric, there are
only a finite number of irreducible symmetric spaces of noncompact type
in a given dimension. Therefore it is sufficient to show that C depends
only on the individual symmetric spaces (Xi, gi). Furthermore, when
we apply Theorem 4.1, we will take the limit as s → h(g) so that the
quantity C

(
h(g)

h(g1)h(g2)...h(gk)

)n
is the constant appearing in Theorem 1.2.

It is evident then that the right-hand side of inequality of Theorem 1.2
is scale invariant with respect to the metrics g and gi.

We claim that the quantities h(g) and h(gi) can be bounded by Ricci
curvatures. The Bishop Volume Comparison Theorem ([7]) states that
if the Ricci curvatures of (Y, g) are all greater than (n − 1)κ for some
κ ≤ 0 then for any y ∈ Y and r > 0,

Vol B(y, r) ≤ Vκ(r)
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where Vκ(r) is the volume of the ball of radius r in the space form of
constant curvature κ. In particular this implies that

h(g) ≤ lim
r→∞

log Vκ(r)
r

= (n − 1)
√
−κ.

Similarly, in the course of the proof of Theorem 4.1 we will see
explicitly that

h(gi) = Tr
√
−Ri(b+, ·, b+, ·)

where Ri is the curvature tensor on (Xi, gi). In particular

h(gi) ≥ min{1,−Ricci(b+, b+)}.

Therefore the constant C in Theorem 1.2 depends only on the Ricci
curvatures of N and M .

We will prove Theorem 4.1 in several steps.

4.1 Finding the Jacobian

We obtain the differential of Fs by implicit differentiation:

0 = Dx=Fs(y)Bs,y(x) =
∫

∂F X
dB(Fs(y),θ)(·)dσs

y(θ).

Hence as 2-forms

0 = DyDx=Fs(y)Bs,y(x)

=
∫

∂F X
DdB(Fs(y),θ)(DyFs(·), ·)dσs

y(θ)

− s

∫
Y

∫
∂F X

dB(Fs(y),θ)(·) 〈∇yd(y, z), ·〉 dνφ(z)(θ)dµs
y(z).

The distance function d(y, z) is Lipschitz and C1 off of the cut locus
which has Lebesgue measure 0. It follows from the Implicit Function
Theorem (see [3]) that Fs is C1 for s > h(g). By the chain rule,

Jac Fs = sn
det

(∫
Y

∫
∂F X dB(Fs(y),θ)(·) 〈∇yd(y, z), ·〉 dνφ(z)(θ)dµs

y(z)
)

det
(∫

∂F X DdB(Fs(y),θ)(·, ·)dσs
y(θ)

) .
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Applying Hölder’s inequality to the numerator gives:

| Jac Fs|

≤ sn
det

(∫
∂F X dB2

(Fs(y),θ)dσs
y(θ)

)1/2
det

(∫
Y 〈∇yd(y, z), ·〉2 dµs

y(z)
)1/2

det
(∫

∂F X DdB(Fs(y),θ)(·, ·)dσs
y(θ)

) .

Using that Tr 〈∇yd(y, z), ·〉2 = |∇yd(y, z)|2 = 1, except possibly on
a measure 0 set, we may estimate

det
(∫

Y
〈∇yd(y, z), ·〉2 dµs

y(z)
)1/2

≤
(

1√
n

)n

.

Therefore

| Jac Fs| ≤
(

s√
n

)n det
(∫

∂F X dB2
(Fs(y),θ)dσs

y(θ)
)1/2

det
(∫

∂F X DdB(Fs(y),θ)(·, ·)dσs
y(θ)

) .(2)

4.2 Reduction to the irreducible case

In this subsection we make, following [9], a reduction to the case when
X = M̃ is irreducible.

If X = X1×· · ·×Xk is the irreducible expression for X as a product,
the group G = Isom(X) can also be written as a product G = G1 ×
G2 · · · × Gk, where each Gi �= SL(2,R), SL(3,R) is a simple Lie group.
Theorem 2.3 implies that for all y ∈ Y , the measure σs

y is supported on
the G-orbit

G · b+(∞) = {(G1 × G2 · · · × Gk) · b+(∞)}.

Hence
∂F X = G · b+(∞) = ∂F X1 × · × ∂F Xk.

Since each Xi has rank one, ∂F Xi = ∂Xi so that

∂F X = ∂X1 × · · · × ∂Xk.

Let Bi denote the Busemann function for the rank one symmetric
space Xi with metric gi. Then for θi ∈ ∂Xi ⊂ ∂X and x, y ∈ Xi we
have B(x, y, θi) = Bi(x, y, θi). Since the factors Xi are orthogonal in X
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with respect to the metric g0, the Busemann function of (X, g0) with
basepoint p ∈ X at a point θ = (θ1, . . . , θk) ∈ ∂F X is given by

B(x, θ) =
1√
k

k∑
i=1

Bi(xi, θi).

The Schur estimate for the determinant of symmetric semidefinite
block matrices states,

det
(

A B
B∗ C

)
≤ det(A) det(C).

Applying the dual form of this estimate to our symmetric tensors we
have

det

∫
∂F X

(
k∑

i=1

d(Bi)(πiFs(y),πiθ)

)2

dσs
y(θ)


≤

k∏
i=1

det
(∫

∂F Xi

(
d(Bi)(πiFs(y),θi)

)2
d(πi)∗σs

y(θi)
)

,

where πi : X → Xi and πi : ∂F X → ∂F Xi are the canonical projections.
Since DdB(Fs(y),θ) = 1√

k

∑k
i=1 DdBi(πiFs(y),πiθ), the denominator al-

ready splits as,

det
(∫

∂F X
DdB(Fs(y),θ)(·, ·)dσs

y(θ)
)

=
k∏

i=1

det
(∫

∂F Xi

(
Dd(Bi)(πiFs(y),θi)

)
d(πi)∗σs

y(θi)
)

.

Putting these together we obtain,

| Jac Fs(y)|

≤
(

s√
n

)n k∏
i=1

det
(∫

∂F Xi

(
d(Bi)(πiFs(y),θi)

)2
d(πi)∗σs

y(θi)
)1/2

det
(∫

∂F Xi

(
Dd(Bi)(πiFs(y),θi)

)
d(πi)∗σs

y(θi)
) .

Therefore we only need to bound each term in the product seperately. It
suffices then to prove that for an irreducible symmetric space (X, g0) �=
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H2, SL(3,R)/ SO(3,R), and for any measure µ on ∂F X, that

det
(∫

∂F X dB2
(Fs(y),θ)dµ(θ)

)1/2

det
(∫

∂F X DdB(Fs(y),θ)(·, ·)dµ(θ)
) ≤ C

h(g0)
.

We will continue to write σs
y instead of µ or (πi)∗σs

y. The only
property we use of σs

y from this point on is that it is fully supported on
∂F X. Since supp((πi)∗σs

y) = πi(supp(σs
y)) = ∂F Xi there is no harm by

this imprecision.

4.3 Simplifying the Jacobian

As stated above we need only now consider irreducible (X, g0). For each
point x ∈ X, we let Fx denote the canonical flat passing through x, i.e.,
Fx = exp(a) · x. We denote the tangent space to Fx simply as F with
the base point suppressed since it is naturally isomorphic to the Lie
algebra exp(a).

We wish to bound the quantity

det
(∫

∂F X dB2
(Fs(y),θ)dσs

y(θ)
)1/2

det
(∫

∂F X DdB(Fs(y),θ)(·, ·)dσs
y(θ)

) .

Let F denote the tangent space to the flat FFs(y). Choose an or-
thonormal basis {ei} for the tangent space TFs(y)X such that e1, . . . ,
erank(X) is a basis for F with e1(∞) = b+(∞). We may write the term∫

∂F X
DdB(Fs(y),θ)(·, ·)dσs

y(θ)(3)

in matrix form as ∫
∂F X

Oθ

(
0 0
0 Dλ

)
O∗

θ dσs
y(θ)

where Oθ is the orthogonal matrix in the ei basis corresponding to the
derivative of the unique isometry in K = StabG(Fs(y)) which sends e1

to v(Fs(y),θ) (the vector in the tangent space of the point Fs(y) in the
direction θ ∈ ∂F X). In the above expression, the upper left zero matrix
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sub-block has dimensions rank(X) × rank(X), and Dλ has the form

Dλ =


λ1 0 . . . 0

0 λ2 0
...

... 0
. . . 0

0 . . . 0 λn−rank(X)


where {λ1, . . . , λn− rank(X) } is the set of nonzero eigenvalues of
DdB(Fs(y),θ). Since DdB(x,θ) is G equivariant, its eigenvalues do not
depend on x but only on which K-orbit in ∂X the point θ lies in. In
particular, DdB(x,θ) is flow invariant and hence the Ricatti equation
shows that it is simply related to the curvature tensor by

DdB(x,θ) =
√

−R(v(x,θ), ·, v(x,θ), ·).

On the other hand in a symmetric space R(v, ·, v, ·) = −(adv)2|p.
Therefore the eigenvalues of DdB(Fs(y),θ) are those of DdB(p,b+(∞)) which

in turn are those of
√

ad2
b+ |p. (Note that while adb+ does not preserve

p, (adb+)2|p is a symmetric endomorphism of p.) Recall, b+ = b/‖b‖
where b =

∑
β∈Λ+

A
mβHβ for any choice of A ∈ a (the choice of A only

determines the Weyl chamber containing b). Setting

pα = p ∩ (gα ⊕ g−α),

we have pα = {X − θpX : X ∈ gα}.
By definition of gα, for each α ∈ Λ+

A we may write

(adb+)2|gα = α(b+)2 Id =

 1
‖b‖

∑
β∈Λ+

A

α(mβHβ)


2

Id .

The same expression clearly holds for (adb+)2|g−α . Therefore, for any
α ∈ Λ,

√
(adb+)2|pα = |α(b+)|. For p0 = a the same formula holds with

α = 0. In particular, the ratio of the largest eigenvalue (denoted by
λmax) among the λi’s in Dλ to the smallest nonzero eigenvalue (denoted
by λmin) only depends on X.

Furthermore, since α(b+) > 0 for all α ∈ Λ+
A and dim pα = mα, we
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have

Tr
√

ad2
b+ |p =

∑
α∈Λ+

A

mαα(b+)

=
1
‖b‖

∑
α,β∈Λ+

A

mαmβα(Hβ)

=
1
‖b‖

〈 ∑
β∈Λ+

A

mβHβ,
∑

α∈Λ+
A

mαHα

〉
=

‖b‖2

‖b‖ = h(g0)

where the last equality follows from Theorem 2.3. As a result, there is
a constant c only depending on X such that

h(g0)
c

≤ λi ≤ c h(g0)(4)

for i = 1, . . . , (n − rank(X)). We now use the following.

Lemma 4.2. The determinant of a sum of n×n positive semidefi-
nite matrices is a nondecreasing homogeneous polynomial of degree n in
the eigenvalues of each summand. Furthermore, if the sum is positive
definite, then the determinant is strictly increasing in the eigenvalues of
the summands.

Proof. Let M be the sum of positive semidefinite matrices. Then
there exist fixed orthogonal matrices Ol and real numbers λl,j such that
M may be written as

M =
∑

l

Ol


λl,1 0 . . . 0

0 λl,2 0
...

... 0
. . . 0

0 . . . 0 λl,n

O∗
l .

Then we have the differentiation formula (see, e.g., Prop. 2.8 of [8]):

d

dλl,j
det M = Tr

(
d

dλl,j
M

)
Madj

where Madj is the adjunct matrix of M . Now,

d

dλl,j
M = OlE(j,j)O

∗
l
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where E(j,j) is the elementary matrix with 1 in the (j, j) position and
zeros elsewhere. Therefore, by cyclically permuting Ol in the trace
above we find that d

dλl,j
det M is the (j, j) the entry of O∗

l M
adjOl which

is nonnegative since M is positive semidefinite. Lastly, if M is positive
definite then O∗

l M
adjOl is also, which means that d

dλl,j
det M is positive.

The lemma follows. q.e.d.

Applying Lemma 4.2 to the Riemann sums for the integral (3) above,
using the bound in Equation (4), and taking limits, gives

det
∫

∂F X
DdB(Fs(y),θ)(·, ·)dσs

y(θ)

≥
(

h(g0)
c

)n

det
∫

∂F X
Oθ

(
0 0
0 In−rank(X)

)
O∗

θ dσs
y(θ)

where In−rank(X) is the identity matrix of dimension n − rank(X).
Next we observe that, relative to the orthonormal basis {e1, . . . ,

erank(X)} for TFs(y)X, the expression∫
∂F X

dB2
(Fs(y),θ)dσs

y(θ)

may be written in the form

Q1 =
∫

∂F X
Oθ

(
1 0(n−1)×1

01×(n−1) 0(n−1)×(n−1)

)
O∗

θ dσs
y(θ)

where Oθ is the same matrix as above. Let

Q2 =
∫

∂F X
Oθ

(
0 0
0 In−rank(X)

)
O∗

θ dσs
y(θ).

We have just shown that, to prove Theorem 4.1, it suffices to prove
that

det Q1

(det Q2)2
≤ C(5)

for some constant C. The rest of this section will be devoted to proving
this.
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4.4 Eigenvalue matching

Here is the general idea of our proof of Theorem 4.1, which we have
reduced to showing (5) above. Since the numerator is bounded above,
we consider when the matrix Q2 in the denominator has any eigenvalues
smaller than a certain constant depending only on the dimension of
X. When this occurs, Theorem 4.4 below will show that each such
eigenvalue is matched by at least two smaller (up to a universal constant)
eigenvalues of the matrix Q1 in the numerator.

Let {vi} be an orthonormal eigenbasis for the symmetric matrix Q2,
and recall that {ei} is a basis for the tangent space F to the fixed, chosen
flat. Note that the i-th eigenvalue of the matrix Q2 may be written as

Li = v∗i Q2vi =
∫

∂F X

n∑
j=rank(X)+1

〈Oθ.ej , vi〉2 dσs
y(θ).

We first argue that no Li equals zero. Since s > h(g) we have that
the measures µs

y is a finite measure in the Lebesgue class (dg). Since
the νx for x ∈ X are positive on any open set (with respect to the
cone topology) of ∂F X, it follows that σs

y is as well. In particular,
{Oθ|θ ∈ supp(σs

y) = ∂F X} is isomorphic to the group K and therefore
there is no nonzero subspace V ⊂ TFs(y)X such that OθV ⊂ F for all
θ ∈ ∂F X. Hence none of the eigenvalues Li are 0.

Let ε = 1/(rank(X) + 1). Note that ε is a constant depending only
on n, as there are only finitely many symmetric spaces of a given rank
and given dimension. Suppose k of the eigenvalues are strictly less than
ε. Since each Li ≤ 1, and since∑

i

Li = Tr Q2 = n − rank(X)

it follows easily that k ≤ rank(X). By rearranging the order we may
assume that Li < ε for i = 1, . . . , k.

Let H be an inner product space over R, and denote by SO(H)
the special orthogonal group of H. Scale the bi-invariant metric on
SO(H) so that SO(H) has diameter π/2. Define the angle between two
subspaces V, W ⊂ H as

∠(V, W )

:= inf
{

dSO(H)(I, P ) : P ∈ SO(H) with PV ⊂ W or PW ⊂ V
}

.
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Let πV (W ) represent the orthogonal projection of W onto V . Then
it is routine to verify the following properties of the angle:

1. ∠(V, W ) ≤ π
2 .

2. ∠(V, W ) = ∠(W⊥, V ⊥).

3. ∠(V, W ) = ∠(W, V ).

4. If V ⊆ U and dimU ≤ dim W then ∠(V, W ) ≤ ∠(U, W ), or
if V ⊆ U and dimV ≥ dim W then ∠(V, W ) ≥ ∠(U, W ).

5. If ∠V, W = 0 then V ⊆ W or W ⊆ V .

6. If U ⊆ W then ∠(πV (U), U) ≤ ∠(πV (U), W ) ≤ ∠(V, W ).

For a 1-dimensional subspace V spanned by a vector v, our definition
of angle agrees with the usual definition:

7. V = span{v} ⇒ cos(∠(V, W )) = 〈v,πW (v)〉
|v|·|πv(W )| .

Finally, ∠ satisfies the following form of the triangle inequality.

Lemma 4.3 (Triangle inequality for ∠). Let U, V, W be subspaces
of a fixed inner product space H. Suppose that dim U = dim W ≤ dim V .
Then

∠(V, W ) ≤ ∠(U, V ) + ∠(U, W ).

Proof. By definition of ∠ there exist P1, P2, P3 ∈ SO(H) with:

• P1W ⊆ V and ∠(V, W ) = dSO(H)(I, P1).

• P2U ⊆ V and ∠(U, V ) = dSO(H)(I, P2).

• P3U = W and ∠(U, W ) = dSO(H)(I, P3).

Now P2P
−1
3 W ⊆ V so that

d(I, P1) ≤ d(I, P2P
−1
3 )

= d(P2, P3)

≤ d(I, P2) + d(I, P3)

and we are done. q.e.d.

One of the main ingredients in the proof of Theorem 4.1 is the fol-
lowing.
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Theorem 4.4 (Eigenvalue Matching Theorem). For any k-frame
given by orthonormal vectors v1, . . . , vk of TxX with k ≤ rank(X) there
is an orthonormal 2k-frame given by vectors v′1, v

′′
1 . . . , v′k, v

′′
k , each per-

pendicular to span{v1, . . . , vk}, such that for i = 1, . . . , k and all h ∈ K,
there is a constant C, depending only on dim X, such that

∠(hv′i,F⊥) ≤ C∠(hvi,F)

and
∠(hv′′i ,F⊥) ≤ C∠(hvi,F)

where hv represents the linear (derivative) action of K on v ∈ TxX.

We will prove Theorem 4.4 in Section 5; its proof is independent of
the rest of the paper.

4.5 Proof of the Jacobian estimate

Assuming Theorem 4.4 for the moment, we now complete the proof of
Theorem 4.1.

Proof of Theorem 4.1. From Equation (2) and the reduction in §4.3
we see that it is sufficient to show that

det Q1

(det Q2)2
≤ C

for some constant C depending only on n.
As before let L1, . . . , Lk be the k ≤ rank(X) eigenvalues of Q2 which

are strictly less than ε = 1/(rank(X) + 1). If no such eigenvalues exist,
then there is a lower bound on Q2 depending only on rank(X). As there
is an upper bound on Q1, we are done (see the discussion on dependency
of constants above). So we assume k ≥ 1.

Let v1, . . . , vk be an orthonormal set of associated eigenvectors. Re-
call that {ei} denotes the chosen orthonormal basis for the TFs(y)X such
that e1, . . . , erank(X) spans the tangent space F to the fixed maximal flat.

For any vector v ∈ TFs(y)X let

r(v) =
n∑

j=rank(X)+1

〈ej , v〉2

so that
Li =

∫
∂F X

r(O∗
θvi) dσs

y(θ).
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Since e1, . . . , erank(X) form an orthonormal basis for F , for any unit
vector v we have

cos(∠(v,F)) = 〈v, πF (v)〉 /|πF (v)|

=
〈
v,

∑
〈v, ej〉 ej

〉/(∑
〈v, ej〉2

)1/2

=
(∑

〈v, ej〉2
)1/2

so that

cos(∠(v,F))2 =
rank(X)∑

j=1

〈v, ej〉2 .

Hence

r(v) = 1 −
rank(X)∑

j=1

cos2(∠v, ej)

= 1 − cos2(∠v,F)

= sin2(∠v,F).

Similarly

〈v, e1〉2 ≤
rank(X)∑

j=1

〈v, ej〉2 = sin2(∠v,F⊥).

For each i = 1, . . . , k, let v′i and v′′i be the pair of vectors correspond-
ing to vi produced by the Eigenvalue Matching Theorem (Theorem 4.4).
That theorem together with the concavity of sin2 θ for 0 ≤ θ ≤ π/2 gives,
for all θ ∈ ∂F X and for each wi = v′i or v′′i , that

sin2(∠O∗
θwi,F⊥) ≤ sin2(C∠O∗

θvi,F) ≤ C2 sin2(∠O∗
θvi,F)

where C > 1 is the constant in the Eigenvalue Matching Theorem.
Furthermore, Q1 is the integral (against a probability measure) of

matrices with all eigenvalues less than 1 so no eigenvalue of Q1 is greater
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than one. Hence we may estimate

det Q1 ≤
k∏

i=1

(v′i.Q1.v
′
i)(v

′′
i .Q1.v

′′
i )

=
k∏

i=1

(∫
∂F X

〈
e1, O

∗
θ .v

′
i

〉2
dσs

y(θ)
)

·
(∫

∂F X

〈
e1, O

∗
θ .v

′′
i

〉2
dσs

y(θ)
)

≤
k∏

i=1

(∫
∂F X

sin2(∠O∗
θ .v

′
i,F⊥) dσs

y(θ)
)

·
(∫

∂F X
sin2(∠O∗

θ .v
′′
i ,F⊥) dσs

y(θ)
)

≤
k∏

i=1

(∫
∂F X

C2 sin2(∠O∗
θ .vi,F) dσs

y(θ)
)

·
(∫

∂F X
C2 sin2(∠O∗

θ .vi,F) dσs
y(θ)

)

= C2k
k∏

i=1

L2
i

= C2k det Q2
2

n∏
i=k+1

L−2
i

≤ C2k det Q2
2(rank(X) + 1)2(n−k).

The last inequality follows from the definition of k, whereby Li ≥
1

rank(X)+1 for each i > k.
The constant C in Theorem 4.1 may be taken to be the product

(over factors Xj of X with dimension nj),

1√
n

n

∏
j

C
rank(X)
j c

nj

j (rank(Xj) + 1)(nj)

where Cj ≥ 1 is the constant C from Theorem 4.4, cj is the constant c
in Equation (4) and kj is the constant k above. This combined constant
depends only on n = dim X. q.e.d.
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4.6 A cautionary example

In the general method of [2] as well as here, one is solving a minimiza-
tion problem without regard to the measure. However, at least in the
SL3(R)/ SO3(R) case, to get a bound on the Jacobian of Fs one must
use further properties of the measure, as indicated by the example we
now give.

If for a single flat Fx and a sequence of yi ∈ Fx, the measures σs
yi

tend to the sum of Dirac measures 1
2δb+(∞) + 1

2δwb+(∞) where w is in
the Weyl group for Fx, then we claim that Jac Fs(yi) → ∞. First note
that the sum

dB2
(Fs(yi),b+(∞)) + dB2

(Fs(yi),wb+(∞))

has only a 3-dimensional kernel, while

DdB(Fs(yi),b+(∞)) + DdB(Fs(yi),wb+(∞))

has a 2-dimensional kernel. Furthermore

Q1 =
∫

∂F X
dB2

(Fs(yi),θ)dσs
yi

and Q2 =
∫

∂F X
DdB(Fs(yi),θ)dσs

yi

degenerate in the same way, so that det(Q1)/ det(Q2)2 is unbounded.
This can be easily verified explicitly in the case of a sum of five Dirac
measures for which both integrals are nonsingular degenerating to the
sum of the two Dirac measures given above.

A similar problem occurs when there are H2 factors. These and
other examples are worked out in full detail in Section 6 of [10].

5. Proof of the Eigenvalue Matching Theorem

In order to prove Theorem 4.4 we will need a series of lemmas.

5.1 Dimension inequalities

For any x ∈ X and any subspace V ⊆ TxX, denote by KV the elements
of K which stabilize V (i.e., leave V invariant). For V ⊂ F , if FixK(V )
is the subgroup of K which fixes V pointwise then KV = U · FixK(V )
where U is the subgroup stabilizing V of the (discrete) Weyl group which
stabilizes F (see [11]).

The following lemma is a basic algebraic ingredient in the proof of
Theorem 4.4.
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Lemma 5.1 (Dimension inequality, I). With the above notations,

dim
(
span{KV · F}⊥

)
≥ 2 dim(V ).

Proof. First we show that KV · F is itself a subspace hence equal to
its span.

Recognize that KV ·F is the union of all tangent spaces to flats which
contain V . Pick a basis v1, . . . , vl of V note that KV · F = ∩l

i=1F(vi)
where F(vi) is the union of all the tangent spaces to flats containing
vi using the notation of [11]. Proposition 2.11.4 of [11] states that
F(vi) = Rr × Xi for some symmetric space of noncompact type and
r ≤ rank(X). In particular it is a manifold and the tangent space to it
corresponds to Kvi · F , which is a vector space. Then KV · F is a vector
space.

Let KF be the stabilizer of F in K. Then KF ⊂ W · KV where W
denotes the Weyl group (a finite group). Hence dimKF = dim(KF ∩
KV ). Hence

dim KV · F = dim KV + dimF − dim KF .

Since X = K · F we obtain

dim M = dim K + dimF − dim KF .

Putting this together we obtain,

(dim span{KV · F})⊥ = dim M − dim KV · F = dim K − dim KV .

But Lemma 5.2 below gives that this final term is ≥ 2 dim V , as
desired. q.e.d.

The following lemma was used in the proof of Lemma 5.1. Recall
that, at this point, we are assuming that the symmetric space X is
irreducible and has rank(X) ≥ 2.

Lemma 5.2 (Dimension inequality, II). Assume that X �= SL3(R)/ SO3(R).
Then for any subspace V ⊂ F , we have

dim K ≥ 2 dim V + dim KV .

This lemma is the only place where X �= SL3(R)/ SO3(R) is used.
Proof. For a root α ∈ Λ in F , define kα = (Id +θp)gα, where θp is

the Cartan involution at p = Fs(y). Then by Proposition 2.14.2 of [11]
we have that kα = gα ⊕ g−α ∩ k, kα = k−α, and dim kα ≥ 1.
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Note that from the definition of gα it follows immediately that

kα = {Y ∈ k|[X, Y ] = 0 for all X ∈ ker α}.

Note that in G the normalizer mod centralizer is finite for any flat
subspace. Therefore for any V ⊂ F we may write the Lie algebra kV of
KV as,

kV = {Y ∈ k|[X, Y ] = 0 for all X ∈ V }.

It then follows from the previous statements that,

kV = k0 +
∑
α∈Λ

V ⊂ker α

kα.

Consequently, we may assume that V in the statement of the lemma
is maximally singular: V may be written as the intersection of the
kernels of the greatest number of roots among all subspaces of dimension
dim V . Otherwise dim KV = dim kV is strictly smaller than it would be
if V were maximally singular.

Recall that we have the invariant inner product φp on a and hence
on F . Let Λ denote the collection of roots. For α ∈ Λ, let Hα ∈ F
denote the dual root vector (with respect to φp) corresponding to α.
For any subset V ⊂ F we define the function

cardR(V ) :=
1
2

card{α ∈ Λ|Hα ∈ V }.

Since root vectors lying in a subspace always come in opposing pairs,
cardR is a positive integer.

Let α be any root. Note that if a subspace V ⊂ ker α, then Hα lies
in V ⊥. Therefore the statement of the lemma reduces to showing that

dim k0 +
∑
α∈Λ

dim kα ≥ 2 dim V + dim k0 +
∑
α∈Λ

V ⊂ker α

dim kα

or more simply, ∑
Hα∈F\V ⊥

dim kα ≥ 2 dim V.

Swapping V ⊥ for V and vice versa, and using dim kα ≥ 1 for each
α, it is sufficient to prove that

cardR(F \ V ) ≥ 2(rank(X) − dim V ).(6)
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Since we are assuming that G is simple, we could check this condition
by using a classification of root vectors in the simple algebras such as
in [22]. However, because this would be tedious we will instead give a
synthetic proof.

For each i = 0, . . . , rank(X), we say that Wi ⊂ F is a maximally
rooted subspace of dimension i if

cardR(Wi) = max{cardR(V ) : V ⊂ F with dimV = i}.

In other words, Wi is maximally rooted if W⊥
i is maximally singular.

We claim that if 0 = W0, W1, . . . , Wrank(X) = F are any maximally
rooted subspaces of F with dimWi = i, then for 0 < i ≤ rank(X),

cardR(Wi) ≥ i + cardR(Wi−1).(7)

This is true for i = 1 since W1 is one dimensional it contains a root
vector pair and the trivial subspace W0 contains none. By induction,
assume the claim holds for all maximally rooted subspace Wi of dimen-
sion i < j. In particular, for such a space Wj−1 and for any subspace
Z ⊂ Wj−1 of codimension one, cardR(Z) ≤ cardR(Wj−2) so

cardR(Wj−1 \ Z) = cardR(Wj−1) − cardR(Z) ≥ j − 1.

We claim that there exists a root vector Hα which is not in Wj−1 or
its perpendicular W⊥

j−1 (with respect to φp). If not, then every root
vector either lies in Wj−1 or W⊥

j−1 which implies the root system is
reducible (e.g., Corollary 27.5 of [18]), and hence G is reducible, contrary
to assumption.

Therefore, H⊥
α ∩Wj−1 is a codimension one subspace of Wj−1 and by

inductive hypothesis there are at least j−1 distinct pairs of root vectors
±Hα1 , . . . ,±Hαj−1 in Wj−1 \ (H⊥

α ∩ Wj−1). For each of these we have
φp(Hα, Hαl

) �= 0. By the standard calculus of roots (e.g., Proposition
2.9.3 of [11]) this implies that for each 1 ≤ l ≤ j−1 either ±(Hα +Hαl

)
or ±(Hα − Hαl

) is a pair of root vectors lying in Wj−1 ⊕ 〈Hα〉 which
does not lie in Wj−1. Including Hα, these form at least j pairs of
root vectors which are contained in Wj−1 ⊕ 〈Hα〉 \ Wj−1. Therefore
cardR(Wj−1 ⊕ 〈Hα〉) ≥ cardR(Wj−1) + j. Since by definition of Wj ,
cardR(Wj) ≥ cardR(Wj−1 ⊕ 〈Hα〉), the claim follows.

Recursively applying Equation (7) shows that for 0 ≤ i < j ≤
rank(X),

cardR(Wj) − cardR(Wi) ≥
j∑

k=i

k =
j(j + 1)

2
− i(i + 1)

2
.
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Now to prove the inequality (6), as noted before we may assume V of
dimension q is maximally rooted, since then V ⊥ is maximally singular.
Since F is a maximally rooted space, the above expression reads

cardR(F \ V ) = cardR(F) − cardR(V )

=
rank(X)(rank(X) + 1)

2
− q(q + 1)

2
.

This is readily seen to be greater that 2(rank(X)−q) unless rank(X)
= 2 and q = 0 (V = F). However, every irreducible Lie algebras of rank
two other than sl(3,R) has at least four pairs of roots (see [17], p. 44,
Figure 1), and hence the inequality (6) is satisfied in all of the required
cases. q.e.d.

5.2 Angle inequalities

Lemma 5.3 (Angle inequality, I). For any subspace V ⊆ F there is
a subspace V ′ ⊂ V ⊥ with dim V ′ ≥ 2 dim V and a constant C depending
only on the symmetric space X such that for all k ∈ K,

∠(kV ′,F⊥) ≤ C∠(kV,F)

where kV represents the linear (derivative) action of K on V ⊂ TxX.

Proof. For any subspace V ⊂ F , let U1, U2, . . . , Ul(V ) be the maxi-
mally singular subspaces of dimension dimV which have minimal angle
with V . Define SV = U1 ⊕ . . . ⊕ Ul(V ) ⊂ F . If G(r,F) denotes the
Grassmann variety of subspaces in F with dimension r, then the set
of V ∈ G(r,F) for which l(V ) is constant has codimension l(V ) − 1 in
G(r,F).

For any subspace V ⊂ F we define a subspace V ′ ⊂ F⊥ by

V ′ = (span{KSV
· F})⊥

where KSV
is the subgroup of K which stabilizes SV . By Propo-

sition 5.1, V ′ has dimension at least 2 dim V since we always have
KSV

⊂ KU for some U ⊂ F with dimU = dim V .
If no such constant C as in the lemma exists then there is a sequence

ki ∈ K and Vi ⊂ F with dimVi = r such that

∠(ki Vi,F)
∠(ki V ′

i ,F⊥)
→ 0.(8)
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Now since SV and hence V ′ varies upper semicontinuously in V
(thinking of the map V → V ′ as a self-map of G(r,F)), it follows from
the continuity of the ∠ function that

∠(k V,F)
∠(k V ′,F⊥)

is lower semicontinuous in V .
However since both K and G(r,F) are compact, for some subse-

quence of the kiVi, the ki converge to k0 ∈ K and the Vi converge to a
fixed subspace V0 ⊂ F . Furthermore, k0V0 lies in F since ∠(k0V0,F)
must be 0. It follows that k0 ∈ W · KV0 where W is the Weyl group
stabilizing F .

By construction, KV0 ⊂ KV ′
0

and for any w ∈ W ,

∠(wV ′
0 ,F⊥) = ∠(V ′

0 , w
−1F⊥) = ∠(V ′

0 ,F⊥).

Therefore, we also have ∠(k0V
′
0 ,F⊥) = 0. Continuity of ∠ along

with the fact that W ⊂ K acts isometrically implies that it is sufficient
to show that for any fixed subspace V ⊂ F the quantity

lim inf
k→KV

∠(kV,F)
∠(kV ′,F⊥)

is bounded away from 0. Note that since this quantity is lower semicon-
tinuous in V , and since G(r,F) is compact, it is unnecessary to show
that the bound is independent of V .

First we handle the denominator. Using the bi-invariance of the
metric on SO(n), the properties of the angle function, and the fact that
for all k0 ∈ KSV

we have k0 k k−1F ⊂ KSV
F , it follows that

dSO(n)(k, KSV
)

= dSO(n)(k
−1, KSV

)

= dSO(n)(KSV
· k, Id)

≥ inf{dSO(n)(Id, P ) : P ∈ SO(n) with Pk−1F ⊂ KSV
F}

= ∠(span{KSV
F}, k−1F)

= ∠(kKSV
F ,F)

= ∠
(
(kKSV

F)⊥,F⊥
)

= ∠(kV ′,F⊥).
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So it remains to show that for any sequence ki → kV ∈ KV in
any fixed neighborhood U of KV , that ∠(kiV,F) ≥ CdSO(n)(ki, KSV

).
Furthermore, since ∠(kiV,F) = ∠(ki(kV

i )−1V,F) for any kV
i ∈ KV , we

may assume that ki → Id.
By Theorem 2.10.1 of [22], in a sufficiently small neighborhood of Id

we may uniquely write ki as ki = exp(k⊥i ) exp(kS
i ) where kS

i ∈ kSV0
and

k⊥i ∈ k⊥SV0
. Furthermore kS

i → 0 and k⊥i → 0.

Bi-invariance of the metric on SO(n) implies that for |k⊥i | < π
2 ,

dSO(n)(ki, KSV
) = dSO(n)(exp(k⊥i ), KSV

) = |k⊥i |.

Now KV is the only subgroup of K which both leaves V in F and also
intersects all sufficiently small neighborhoods of the identity. Therefore,
in order to show that ∠(kiV,F) ≥ C|k⊥i |, we need only show that

dSO(n)(ki, KV )/|k⊥
i | �→ 0.

Well, the Cambell-Baker-Hausdorff formula implies that

exp(k⊥i ) exp(kS
i ) = exp

(
k⊥i + kS

i + O(|k⊥i | · |kS
i |)

)
.

Since the definition of SV implies that kSV
⊃ kV and k⊥i is perpendicular

to kSV
, we have

dSO(n)(ki, KV ) ≥ |k⊥i | + O(|k⊥i | · |kS
i |).

Since we had |kS
i | → 0 this finishes the lemma. q.e.d.

Lemma 5.4 (Angle inequality, II). For any subspace V of TxX
with dim V ≤ rank(X), there is a subspace V ′ ⊥ V with dim V ′ ≥
2 dim V , and a constant C depending only on n, such that

∠(kV ′,F⊥) ≤ C∠(kV,F) for all k ∈ K.

Proof. The first step of the proof is to reduce to the case when V is
a subspace of F , so that Lemma 5.3 may be applied.

We first observe that the lemma is true if and only if it is true with
V replaced by k0V for any fixed k0 ∈ K. Since K is compact we may
therefore choose V among all kV, k ∈ K so that ∠(V,F) ≤ ∠(kV,F) for
all k ∈ K.
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With this assumption, consider the projection W = πF (V ) of V onto
F . By Lemma 5.3, we obtain a subspace W ′ such that

∠(kW ′,F⊥) ≤ C∠(kW,F)

for all k ∈ K. Then we let V ′ be the projection of W ′ onto V ⊥. By the
properties of the angle function (see 4.4), it follows that

∠(kV ′,F⊥) ≤ ∠(kW ′,F⊥) + ∠(kV ′, kW ′) by Lemma 4.3

≤ C∠(kW ′,F⊥) + ∠(V ′, W ′)

≤ C∠(kW,F) + ∠(V ′, W ′) since (W⊥)⊥ ⊇ W

≤ C∠(kW,F) + ∠V,F for same reason

= C∠(kW,F) + ∠(V,F) since W = πF (V ).

Thus it suffices to bound ∠(kW,F) by a constant times ∠(kV,F).
But

∠(kW,F) ≤ ∠(kV,F) + ∠(kV, kW ) by Lemma 4.3

= ∠(kV,F) + ∠(V, W )

= ∠(kV,F) + ∠(V,F) as W = πF (V )

≤ ∠(kV,F) + ∠(kV,F) by minimality

= 2∠(kV,F)

and we are done. q.e.d.

5.3 Finishing the proof of the Eigenvalue Matching The-
orem

Armed with the lemmas of the previous two subsections, we now prove
Theorem 4.4.

We begin by noting that the construction of V ′ from V above re-
spects subspace inclusion. I.e. if U ⊂ V then U ′ ⊂ V ′. This follows
from the definition of V ′ and the fact that for two singular subspaces
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U1 and U2 with U1 ⊂ U2, we have KU1 · (W ∩ KU2) ⊃ KU2 , where W is
the Weyl group.

Now we simply proceed by induction on the number of vectors k.
For k = 1 we set V = v1 the statement of the proposition follows from
Lemma 5.4. Order the vectors by increasing angle with F . Assume
the proposition for k − 1 vectors, then set Vk = span{v1, . . . , vk}. By
Lemma 5.4 we have an orthogonal subspace of twice the dimension of
Vk, namely V ′

k, which we may write by the preceeding paragraph as
V ′

k = V ′
k−1 ⊕ W ′ where W ′ is two dimensional. The same lemma also

guarantees that ∠W ′,F⊥ ≤ C∠vk,F , since ∠vk,F = ∠Vk,F .
This completes the proof of Theorem 4.4.

6. Finishing the proof of the Degree Theorem

We will break the proof of Theorem 1.2 into the compact and non-
compact cases.

6.1 The compact case

Suppose M and N are compact. Since for s > h(g), Fs is a C1 map,
using Proposition 3.2 and elementary integration theory yields,

|deg(f)|Vol(M) = |deg(f)|
∫

M
dg0(9)

=
∣∣∣∣∫

N
f∗dg0

∣∣∣∣
=

∣∣∣∣∫
N

F ∗
s dg0

∣∣∣∣
≤

∫
N
|Jac Fs| dg

≤ C

(
s

h(g0)

)n

Vol(N).

For the last inequality we have used the principal estimate from
Theorem 4.1. Rearranging terms gives us the inequality in Theorem 1.2
since C depends only on the dimension and

(
s

h(g0)

)n
depends only on

n and the smallest Ricci curvatures of M and N .
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6.2 The noncompact case

We now consider the case when N (and/or M) has finite volume but
is not compact. In this setting, it is not known whether the limit in
the definition of h(g) always exists. For this reason we will define the
quantity h(g) to be

h(g) = inf
{

s ≥ 0
∣∣∣∣ ∃C > 0 such that ∀y ∈ Y,

∫
Y

e−sd(y,z)dg(z) < C

}
.

In fact this agrees with the previous definition for h(g) when N is com-
pact. In the case of the symmetric space (M, g0) this definition of h(g0)
agrees with the previous definition for compact manifolds.

For the finite volume case, the main difficulty is that, in order for the
proof given above to work, we need to know that Fs is proper (and thus
surjective since deg(Fs) = deg(f) �= 0). For this, we will need to prove
higher rank analogs of some lemmas used in [5] for the rank one case.
For the basics of degree theory for proper maps between noncompact
spaces, see [12]. We will need to assume that the geometry of N is
bounded in the sense that its Ricci curvatures are bounded from above
and that the injectivity radius of its universal cover Y is bounded from
below. These are the specific assumptions implied in the third remark
after the theorem.

We will show that Fs is proper by essentially showing that the
barycenter of σs

y lies nearby a convex set containing large mass for this
measure. This convex set is in turn far away from φ(p) whenever x is far
from p ∈ Y . We achieve this by first estimating the concentration of the
mass of σs

y in certain cones which will be our convex sets. One difficulty
that arises in the higher rank is that these cones must have a certain
angle when restricted to a flat. Another difficulty is that the ends of M
can have large angle at infinity. In fact our methods breakdown unless
we control the asymptotic expansion of f down the ends (see Remarks).

First, we localize the barycenter of the measure σs
y. Let v(x,θ) be the

unit vector in SxX pointing to θ ∈ ∂X.

Lemma 6.1. Let K ⊂ X and y ∈ Y be such that (φ∗µs
y)(K) > C

for some constant 1 > C > 1
2 . Suppose that for all x ∈ X there exists

v ∈ SxX such that for all z ∈ K:∫
∂F X

〈
v(x,θ), v

〉
dνz(θ) ≥

1
C

− 1.
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Then
x �= F̃s(y).

Proof. If F̃s(y) = x then ∇xBs,y(x) = 0. However, ∇xBs,y(x) may
be expressed as ∫

X

∫
∂F X

v(x,θ)dνz(θ)dφ∗µ
s
y(z)

where v(x,θ) is the unit vector in SxX pointing to θ ∈ ∂F X. Then we
have

‖DxBs,y‖ =
∥∥∥∥∫

X

∫
∂F X

v(x,θ)dνz(θ)dφ∗µ
s
y(z)

∥∥∥∥
≥

∥∥∥∥∫
K

∫
∂F X

v(x,θ)dνz(θ)dφ∗µ
s
y(z)

∥∥∥∥
−

∥∥∥∥∫
X−K

∫
∂F X

v(x,θ)dνz(θ)dφ∗µ
s
y(z)

∥∥∥∥
≥

∫
K

∫
∂F X

〈
v(x,θ), v

〉
dνz(θ)dφ∗µ

s
y(z) − φ∗µ

s
y(X − K)

≥ φ∗µ
s
y(K)

(
1
C

− 1
)
− 1 + φ∗µ

s
y(K)

> C

(
1
C

− 1
)
− 1 + C = 0.

The strictness of the inequality finishes the proof. q.e.d.

For v ∈ SX and α > 0 consider the convex cone,

E(v,α) = expπ(v)

{
w ∈ Tπ(v)X | ∠π(v)(v(∞), w(∞)) ≤ α

}
,

where π : TX → X is the tangent bundle projection.
Denote by ∂E(v,α) ⊂ ∂X its boundary at infinity.

Lemma 6.2. There exists T0 > 0 and α0 > 0 such that for all
t ≥ T0, all x ∈ X, all v ∈ SxX and all z ∈ E(gtv,α0),∫

∂F X

〈
v(x,θ), v

〉
dνz(θ) ≥

√
2

3
.

Proof. Since the isometry group of the symmetric space X is transi-
tive on X and for any isometry ψ, dψ(E(v,α)) = E(dψ(v),α), it is sufficient
to prove the lemma for a fixed x and all v ∈ SxX.
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For now choose α0 < π/4. Take a monotone sequence ti → ∞, and
any choice zi ∈ E(gtiv,α) for each ti. It follows that some subsequence
of the zi, which we again denote by {zi}, must tend to some point
θ ∈ ∂E(v,α).

Let νθ be the weak limit of the measures νzi . From Theorem 2.4, νθ

is a probability measure supported on a set Sθ satisfying

∠x(θ, ξ) ≤ π

4
∀ξ ∈ Sθ.

Therefore we have,∫
Sθ

〈
v(x,ξ), v(x,θ)

〉
dνθ(ξ) ≥

√
2

2
.(10)

Now whenever θ ∈ ∂E(v,α) then v = v(x,θ) + εv′ for some unit vector
v′ and ε ≤ sin(α). Using either case above we may write∫

∂F X

〈
v(x,ξ), v

〉
dνθ(ξ) ≥

∫
∂F X

〈
v(x,ξ), v(x,θ)

〉
dνθ(ξ) − sin(α).

So choosing α small enough we can guarantee that:

1. Any two Weyl chambers intersecting E(gtv,α) for all t > 0 in the
same flat must share a common face of dimension rank(M) − 1.

2. For any θ ∈ ∂E(v,α),∫
∂F X

〈
v(x,ξ), v

〉
dνθ(ξ) ≥

√
2

2.5
.

Let
E(v(∞),α) = ∩t>0∂E(gtv,α).

By the first property used in the choice of α above, for any two points
θ1, θ2 ∈ E(v(∞),α), either θ1 and θ2 are in the boundary of the same
Weyl chamber, or else there is another point θ′ in the intersection of the
boundaries at infinity of the closures of the respective Weyl chambers.

By maximality there is some θ0 ∈ E(v(∞),α) intersecting the bound-
ary at infinity of the closure of every Weyl chamber which intersects
E(gtv,α) for all t > 0. Hence, for every θ ∈ E(v(∞),α), the support of the
limit measure νθ satisfies Sθ ⊂ Sθ0 . (While θ0 is not necessarily unique,
the support Sθ0 of the corresponding limit measure νθ0 is.)



56 c. connell & b. farb

As t increases, for any z ∈ E(gtv,α), the measures νz uniformly be-
come increasingly concentrated on Sθ0 . Then applying the estimate (10)
to θ = θ0, we may choose T0 sufficiently large so that for all z ∈ E(gtv,α)

with t > T0, ∫
∂F X

〈
v(x,ξ), v

〉
dνz(ξ) ≥

√
2

3
.

q.e.d.

Proposition 6.3. Fs is proper.

Proof. By way of contradiction, let yi ∈ Y be an unbounded se-
quence such that {F̃s(yi)} lies in a compact set K. We may pass to
an unbounded subsequence of {yi}, which we again denote as {yi},
such that the sequence φ(yi) converges within a fundamental domain
for π1(M) in X to a point θ0 ∈ ∂X. Since K is compact, the set

A =
⋂

x∈K

E(gT0v(x,θ0),α0)

contains an open neighborhood of θ0 and dX(A, K) ≥ T0. Notice that
A is itself a cone, being the intersection of cones on a nonempty subset
of ∂X.

We now show that A contains the image φ(B(yi, Ri)) of increasingly
large balls (Ri → ∞). However, we observe from the fact that A is
a cone on an open neighborhood of θ0 in ∂X that A contains balls
B(φ(yi), ri) with ri → ∞. By assumption f , and hence φ, is coarsely
Lipschitz:

dX(φx, φy) ≤ KdY (x, y) + C

for some constants C > 0 and K ≥ 1. Therefore φ−1(B(φ(yi), ri)) ⊃
B(yi, Ri) where KRi + C > ri. In particular Ri → ∞.

Hence, there exists an unbounded sequence Ri such that B(yi, Ri)
⊂ φ−1(A). Furthermore, since the Ricci curvature is assumed to be
bounded from above and the injectivity radius from below, we have that
Vol(B(yi, injrad)) is greater than some constant independent of yi and
hence

∫
Y e−sd(yi,z)dg(z) > Q for some constant Q > 0. By choice of s

there is a constant Cs depending only on s such that
∫
Y e−sd(y,z)dg(z) <

Cs for all y ∈ Y .
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In polar coordinates we may write,∫
Y

e−sd(y,z)dg(z) =
∫ ∞

0
e−st Vol(S(y, t))dt

=
∫ ∞

0
e−st d

dt
Vol(B(y, t))dt

= −
∫ ∞

0

d

dt

(
e−st

)
Vol(B(y, t))dt

= s

∫ ∞

0
e−st Vol(B(y, t))dt.

Using this we may estimate, using any δ < s − h(g),

µs
yi

(φ−1(A)) > µs
yi

(B(yi, Ri))

= 1 −
∫∞
Ri

e−st Vol(B(yi, t))dt∫∞
0 e−st Vol(B(yi, t))dt

≥ 1 −
e−δRi

∫∞
Ri

e−(s−δ)t Vol(B(yi, t))dt∫∞
0 e−st Vol(B(yi, t))dt

≥ 1 − e−δRi
Cs−δ

Q
.

Therefore for all sufficiently large i,

µs
yi

(φ−1(A)) >
3

3 +
√

2
.

The constant 3
3+

√
2

is the constant C from Lemma 6.1 such that 1
C −1 =

√
2

3 .
Set vi = gT0+1v

(F̃s(yi),θ0)
. Recalling that A ⊂ E(vi,α0) for all i, we

have that for sufficiently large i,

φ∗µ
s
yi

(E(vi,α0)) >
3

3 +
√

2

but dX(F̃s(yi), E(vi,α0)) > T0, contradicting the conclusion of Lemma 6.1
in light of Lemma 6.2. q.e.d.

Remarks.

1. In the proof of the above proposition, we used that injrad is
bounded from below and Ricci curvature is bounded from above
only to show that the volume of balls of any fixed radius are
bounded from below.
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2. Ideas from coarse topology can be used to remove the coarse Lips-
chitz assumption on f in the case that the ends of M have angle at
infinity bounded away from π/2. However, M may have ends con-
taining pieces of flats with wide angle (consider the product of two
rank one manifolds each with multiple cusps, or for a classification
of higher rank locally symmetric ends see [16]). For products of
such surfaces it is possible, by expanding a family of infinite cones,
to construct a proper map f : M → M such that for a radial se-
quence yi → ξ ∈ ∂X, φ maps the bulk of the mass of µs

yi
into

a set (almost) symmetrically arranged about a point p ∈ X thus
keeping F̃s(yi) bounded. This explains the need for a condition
on f akin to the coarse Lipschitz hypothesis.

The last proposition actually shows that d(Fsi(x), f(x)) is bounded
for si ≥ s > h(g). In particular, the homotopy in Proposition 3.2 is
proper. The inequality in Theorem 1.2 now follows as in the compact
case, with deg(f) and deg(Fs) suitably interpreted.
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